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In this paper, we will show that Lagrange interpolatory polynomials are optimal
for solving some approximation theory problems concerning the finding of linear
widths.

In particular, we will show that
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where %, is a set of the linear operators with finite rank n + 1 defined on C[-1, 1],
and where #,.,; denotes the set of polynomials p = ijol a;x' of degree<n + 1 such
that |a,11|<1. The infimum is achieved for Lagrange interpolatory polynomial for
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Key Words: degree of approximation; linear positive operators; operators of class
Sn; linear width; finite-dimensional property; Lagrange interpolatory polynomial.

1. INTRODUCTION

Dealing with the problem of approximation of smooth functions by some
class of linear operators, we may find that operators of this class have some
property which limits the degree of approximation of smooth functions by
operators of this class. Let us cite the well-known instances.

It was shown by Korovkin [3] that if linear polynomial operator has the
property of positiveness, the degree of approximation of continuous
functions by this operator is low. Namely, the degree of approximation
by positive linear polynomial operators L,f(x) (n € N, f € C[0,1], L,f is
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an algebraical polynomial of degree 1) cannot be higher than n=2 in C|0, 1]
even for the functions 1, x, x.

Further, in 1962 Korovkin [4] introduced the definition of the operators
of class S, (m is a fixed natural number or zero) and identified [5] the
negative property of the operators of class S, such that the degree of
approximation by the linear polynomial operators of class S,, (of degree n)
cannot be higher than n~”"~2 in the norm of uniform convergence even for
the functions 1,x, x?, ..., x"*2. Using the idea of Videnskii [8] and Vasiliev
has shown in [7] the result of [5] does not depend on the properties of
polynomial but rather on the limitation of dimension.

We will need the following definitions and notations.

Let B[O, 1] be the space of real bounded functions with the uniform norm
/11 = supyepo L/ ().

Linear operator L, mapping C[0,1] into the linear space of finite
dimension 7 + 1 is called an operator with the finite rank n + 1.

Following Korovkin [4] say that linear operator L mapping C[0, 1] into
B[0, 1] belongs to class S, (m is a fixed natural number or zero), if for any
x € [0, 1] there is function ¥.(¢) € C[0, 1] that has m or less changes of sign
on [0, 1] and has the following property: Lf >0 for any f* € C[0, 1], such that
sgnf =sgny,.

If oy, k=0,1,...,n, are points in [0, 1] and /,(x) € B[0,1], k=0, 1,
..., n, then operator

L.f(x)= i f(ak,n)lkﬂ(x)
k=0

is a linear operator from C[0, 1] into B[0, 1] which we call .#-operator with
grid o = (ax,);_, and write L, € # (o). This means that the values of the
function in a certain finite set of points determine the value of the operator
on that function (cf. [1, p. 26]).

Let 4,,,(2) be the set of .#-operators of class S,, with grid o=
O<app<opn< -+ <ap,<1) mapping C[0, 1] into B[O, 1].

Denote .#,,,, =J, Znm(®). Note, that for .#-operators, the condition
L € S, is tantamount to the following: for any x € [0, 1] the number of sign
changes in sequence / ,(x), k=0,1,...,n, does not exceed m.

In this paper, we get the exact value of width:

inf  sup |[p — Lup||, (1.1)

LHEﬂIX.W PE‘?/WHZ

where 2,,., denotes the set of polynomials p = Z:”:T)Z a; x' of degree<m +

2, such that |a,,12| <1. Note that the linear width (1.1) has “good” class of
functions (functions are infinitely smooth) while the class of operators is
“bad” (operators are finite dimensional and the number of kernel
oscillations is limited to a fixed value).
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As a consequence, we will show that the finite-dimensional property is
negative in a sense that an error of approximation of such operators does
not decrease with the increase of smoothness of approximated functions.
Namely, we will show that

f _— L == —
(of sup. P = Lupllci-1,1y = 5

where %, is a set of the linear operators with finite rank » 4+ 1 defined on
C[-1,1], and where 2, denotes the set of polynomials p = Z"H aix' of
degree<n + 1 such that |a,.1|<1. The infimum is achieved for Lagrange

interpolatory polynomial for nodes cos 22’;1} k=0,.

2. LEMMAS

We will begin with proof of some lemmas of algebraic nature. The
principal lemmas of this section are Lemmas 2.3 and 2.4.

Let No N U {0}. Let s~ (x) denote a number of sign changes in sequence
x = (x;)0_, € R**! (zeros are not taken into account).

LEMMA 2.1. Let bpeN; a=(a), e R* 4;#0, i=0,...,b,
ai<a, i = 1,....0; b eN, j=1,...,p, 0O<hi<---<h,<b+p. Let

X = (xi)f’:O be the solution of system

b, 1, 1=0,
3 di = | 1)
pary 0, I=1,....b4+p, I#h;, j=1,...,p.

Then
(a) s=(x) =b—1, if there is integer 1 <r<b, such that a,_; <0<ay;
(b) s¥(x)=b,ifa; >0, i=0,...,b(or a;<0, i=0,...,b).

Proof. The solution of system (2.1) is x = (xk)zzo,

bAp—1, 1#hi—1, j=1,..p b

det||al|| 0. b i~k
X = (=1)f e ; Tk, j=1 H di-
det|\a’|| e Ay =l i=0i%k

The number of sign changes in sequence x = (xk)’,z:() is equal to that of
sequence

b
sgn{ H a,} k=0,....b. 1
k

i=0,i#
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LEMMA 2.2. Let b,peN; az(a,»)f?:oe[R{b“, a;#0, i=0,...,b, a;_
<a, i=1,....,b; hjeN, j=1,....p, O<hi<---<h,<b+p. Then for
ﬁxedj€{17"'7p}5

[||l 0,....b+p—1, I#h—1, r=1,..p

i Va p-1  detf|a b, ik (!
oy % det|| /=0 b+p R s

.....

Proof. Consider the system

Sy dhxi=0, 1=0,....b+p—1, I#h—1, r=1,..p,
Yheo @ = (1)

The solution of this system is x = (x)?_,,

1=0,...b+p—1, I#h—1, r=1,..
k detHa[”z 07...b+,17¢k T

-\ det|\a/|| b+p 1, I#h—1, r=1,..p, r#j’ k:()”b (23)

The statement of Lemma 2.2 follows immediately from (2.3) and the last
equation of (2.2). 1

Denote D, = {{ € R"™" : s~ (I)<m}.

LEmMMA 2.3. Letn>m, n€ N, me Ny, x € [0,1]. Then

m+2| n r
inf I —1 —— ]
,gm{zk S}
m+1 5
I
- gy 2.4
oo i I = 4

Proof. Let

m+2

Z l—1 +Zzn:(——x>r1k

A = {0 = (0p)j_ ER™: 0, € {0, 1,41}, k=0,...,n, s~ (5)<m},

1= (I)}_, € R™,

Dn(d) ={l=(L)j_, € R™™: sgnly =sgndy, k=0,...,n}
with & € 4,,

E={e= ()7 €eR™: g e {-1,+1}, r=0,...,m+2},

Zy(x) = l1€r})f Z(x,1I).
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We have D,, = UﬁeA,,, D,, (9).
For each pair 6 € 4,,, ¢ € E let us set the following problem of linear
programming:

n m+2
[0 =g (Z OkXk — ) + i & Z(— — x) Ok X — min,
k=0

e0(Xk—o Oxxk — 1) —y0 =0,
k !
&r ZZO<;x> oxxe —yr =0, r=1,...,m+2,

xy =0, k=0,...,n,
=20, r=0,..., m+2.

(2.5)

Note that a number of such pair § € 4,,, ¢ € E is finite.

We will use terminology and facts of the theory of linear and convex
programming.

A feasible set is a set of points (xg, X, . . xn,yo,yl,...,ym+2) e Rrmt,
which satisfy the system of constraints (2. 5) Let fmm denote a solution of
problem &% — min. If for some ¢, 6 the feasible set of problem f* 9 — min is
empty we put fmm = +o00.

We have

&0
Zn(x) = llerg; Z(x,l) = ?611‘2 l€101:1f(5> Z(x, 1) = 332112 12111;1 e (2.6)

The rest of the lemma is devoted to finding the right-hand side of
Eq. (2.6).

Lete € E, § € A, be such that a feasible set of problem f%° — min is not
empty (if for any ¢ € E and 6 € 4,, a feasible set of problem f*° — min is
empty, then D,, is empty too that is impossible). It follows from the main
theorem of the linear programming [2] that the solution of problem f%° —
min is achieved in one of the extreme points of the feasible set, and this
extreme point is determined by the choice of m + 3 basic variables.

Let the extreme point (xj,...,x5, V5, ..., Ve ,) of the feasible set of
problem f*° — min be determined by the choice of basic variables x,,, Vs

0<sop< -+ <Sppop<n, 0y < -+~ <h,<m+2,peN, 1<p<m+2.

Let us consider cases b = 0 and #0 separately.

(I) If 7y = 0 then for I* = (I*)}_, = (0;x¥)._, we have [} =0,i=0,...,n,

1

i#sg, k=0,...,m+2—p; and values [}, k=0,....m+2—p, must
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satisfy system

m+2—p Sk
Z( )Z*: r=1,....m+2, r#h, j=2,...,p
= "

Then If =0, k=0,...,n, and [0 = 1.

(IT) If Ay #0 then for /* = (I¥)7_, = (6;x¥)}_, we have [f =0,i=0,...,n,
i#sg, k=0,...,m+2—p; and values [}, k=0,....m+2—p, must
satisfy the system

2 e

Z’Ioz_”(s—k—x) =0, r=1,....m+2, r#h, j=1...,p.
P :
Note that p>1. Indeed if p =0, then it follows from Lemma 2.1 that
s~ (I*)=m+ 1. This contradicts 6 € 4,,.
We have

1;1:(—1)"%, k=0,....m+2—p

with

I=1,..m+2, I#h;, j=1,.p,
di, =det

(o
(o

For h;, j=1,...,p, we have

n k h;
Sh,- Z (— — x) 5kxk
k=0 n

i=0,....m+2—p, i#k,

1=0,...m+2, I#h;, j=1,..p,
d =det

i=0,....,m+2—p.

m+2—p

= Y <&7x)h/’§i B miw (71)]((3_,(7}6);1,@
= " rat " 7
det]| (3 — )| :712_;*”“ =l 12
el = 2
N det||(}} — x) ||’ Of.,,f::i; 117%1];_1\1 =l

X

2 (f1>’“(s—’tx)’“
L det|| (& — x)||=0 L Tt r=Lp

k=0 1:0,...,m+27p
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It follows from Lemma 2.2 that the sum placed inside the modulus equals
(—=1)"". Since

n k i . ) '
si;(zx)ékxko, i=0,....m+2, i#h, j=1,...,p,

we get that the value of linear function of problem f*° — min in extreme
point (x3,...,x%, ¥§,...,yh,,) equals

m+2 n k r
Z & (Z (— — x) 5kx7:>
pr =0 \1*
P
=>

v=1

; Il=1,.m+2, 1#h;, j=1,..p, j#V
deﬂl(S - ) || m+2 —p '

+2, Tk, =T,
det]|(; *x)||l o g T

Now, taking into account (I) and (II) we can conclude that

|
Zu(x) = ming 1, min =
m( { fisk |det\|(%— ) ||l 0; I j/,, /1 | 5

where the minimum is found in

(D) I<tsm+1, 0<ji<pp<- - <jy<m+2, 0<so<--- <s,<n,

2) t=m, 0<ji<pp<- - <jr<m+2, 0<so<---<s,<n, such that
sgn( — x) = sgn(‘% —x) forallij=0,1,...,¢ (see Lemma 2.1(b)).

Finally, using determinant properties we get

Zn(x) = min H

0<s0 <81 < <Spp1<n 0
1=

By repeating the proof of Lemma 2.3 for grid o = (0<ag,, <011, < -+ <
oy, <1) instead of (£)7_; we obtain the following lemma.

n

LEMMA 2.4. Letn>m, n €N, m €Ny, x € [0,1]. Then
m+2
Z Olkn — x)rlk

R {POLSLESS |
m+1

= min O, — X|.
0< 5 <+ <Sps1 <, 5;€Np g i |

Let %, be the set of linear operators with finite rank n 4 1 defined on

C[0,1]. Let us write .4, = %, ..




PROPERTIES OF LAGRANGE INTERPOLATORY POLYNOMIALS 195

LEMMA 2.5. Letg € C[0,1] and L, € %,. Then there is operator M,, € .4,
such that L,g = M,g.

Proof. Indeed, it follows from the Riesz representation theorem that
every linear operator L, € %, can be represented by

Lif(x) = ]z;{ [ s twafuao. e

where (dpy ,);_ is the system of measures on [0, 1], and functions (u )i
are the generating linear space {L,f: f* € C[0, 1]}. Without loss of general-
ity, we assume that fol diy, =1, k=0,1,....n

On the other hand, it follows from the mean value theorem that there is
grid (o n)i_o C [0, 1], such that

1
/ gd:uk,n:g(ak,n)y k:(),l,...,l’l.
0

Thus, the linear operator

belongs to the set .%, and L,g = M,g. 1

Let %, denotes the set of linear positive operators with finite rank n + 1
defined on CJ0, 1].

LemmMma 2.6. Let g € C[0,1] and L, € %, 9. Then there is operator M, €
In0, such that L,g = M,g.

The proof of this lemma is similar to the previous one, only that functions
Uen(x)=0, k=0,...,n, xe[0,1].

3. THE MAIN RESULTS
The main results of this paper can be stated as follows.
THEOREM 3.1. Let x € [0, 1] and let P, be the space of polynomial p =

Z?Q)Z a;x' of degree<m + 2, such that |ay2|<1. Let o = (0<0g, < -+ <
O <1). Then
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m+1
inf su x)—L,p(x)| = min H o — X|. 3.1
Ly pm() peg’},)+2 |p( ) np( )| 0o < <smar <5255 | S | ( )

Proof. Since p € 2,,.» we have

p(1) =n§pm(x) (t—x), t,x €10,1].

Let —‘%2+2 denote the subset of 2,,., which consists of polynomials p, such
that

17| <, r=0,1,...,m+2.
It is obvious that

inf sup X _Ln X)| = inf sup X _Ln x)|.
LnE»ﬁ;z,m(lX) PEP 2 |p( ) p( )| Lnejn.m(a) [’69]9»1+2 |p( ) p( )|

For each operator L, € 4,,(x) there are functions I ,(x) € B0, 1],
k=0,...,n, such that

Lf() =3 fOunln(), £ €C0,1)
k=0

and for each x € [0, 1] a number of sign changes of sequence (/,(x));_, is
less than or equal to m. Then

inf S _ L,
LieSun() 6;}0 | p(x) — Lup(x)]

m+2

inf L A Alt)) r
— _ I
Lo on(x) ”:‘;3112 p(x) =Ly ; p (t—x)" |(x)

m+2
= inf (ILn(l;X)—1I+ZILn((l—X)’)(X)I>

L,eS (@) —1

> hea(x) =1
k=0

= inf
(lk,n(x»Z,oGDm —

It follows from Lemma 2.4 that

m+2

>

r=1

n

> (en = X) len(x)

k=0

m+1

inf  sup |p(x)—Lyp(x)|>  min IT lotsn = xI-
Li€Ium(®) pePyia 0<so<-<spy1<n 4
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On the other hand, let us consider the linear operator
n
Mn,mf(x) = Z f({xk,ﬂ):uk,n,m(x)?
k=0

where functions p ,, ,,(x), k=0,...,n, satisfy

I, r=0
(x'n_xr inm\X) = ’ 7
D P

X e [O‘k,naak-‘rl,n)y k:O,...,I’l*I7
where

m+1
Je =0<jo< - <Jmpr S sup H |otj,n — X

XE[ %kt 10) =0

m+1
= min sup H | OCS,;n - X‘ .
0<S0<m<sm+lgnxe[ak,naakALn] i=0 ’

It follows from Lemma 2.1 that M, ,, € S,,. It follows from Lemma 2.2
that for x € [ogu, Ck+10)s

m+1
sup | p(x) = My, up(x)] = min I lon— x| ®
PEPm+2 0<s0<-<Spy1<n i—0
Remark. Note that on  [ay_14,0,, v=1,...,n,  polynomial

M, nf (x) coincides with Lagrange interpolatory polynomial for nodes o ,,
jed.

THEOREM 3.2. Let o* = (%) . Then

. Clm
inf sup ||p — Lup|| = (m) (3.2)

)
L€ I nm (D(*) PEPm+2 n”7+2

where C(m) = sup,cj T2 i = .
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Proof. 1t follows from Theorem 3.1 that

inf sup ||p — Lup||

Ln&um(@) pePrnia

> sup inf  sup [p(x) — Lyp(x)|
x€[0,1] Ln€Tum(o*) peP,is

m+1
. Si
sup min 17«
xe[0,1] 050 < <smi1<n, 5,€No i '
m+1 i C(I’)’l)
= sup H E -X nmt2”
L 2o
xel0,] ¢

On the other hand, let us consider the linear operator A,,, : C[0, 1] —
C[0, 1] defined by

W ity — [ 45—t i !
m+1

X H (r—i—v—{m—H]—nx—i-S—l)’
r=0,r#1i 2

-1
xe{vn ,’j, v=1,...,n, mneNy, n>m, feC[0,1], (3.3)

where s, 7 € Ny defined by

[%]—v ifv:l,...,[’”T%]—l,
s =
0 for other v,

. v—n+4 ifv=n—-[5+1,...,n,
o for other v.

For each x € [0, 1] we have

Xn:(g—x)rik,n,m(x) _ {(1), F =0

= , r=1,... m+1.
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It follows from Lemma 2.1 that A,,, € £,,,(«). We have

sup ||p — An,mPH

Pe{‘/rn+2

= sup sup
PEPmer x€[0,1] |72 k=0
n k m+2
=, D) et
= sup (——x) (k —nx)"".
ool [\ 2 K(m+ 1 - k)!

It follows from Lemma 2.2 that

C(m)
sup ||p — Auwp|| = ——-
peynH»Z | ‘ " | | n’71+2

This completes the proof of Theorem 3.2. 1§

Remark. Note that on =12 v=1,...,n, polynomial A,,/(x) coin-
o 43 o
cides with Lagrange interpolatory polynomial for nodes $7 i=
0,...,m+ 1, where s, t are defined above.

The following theorem can be proved similarly.

THEOREM 3.3.  Let 9, =, Jum(®). Then

inf su —L
L,€Iym pe?/,,az ||p np”

m+1

= inf min sup H |ots;.n — x|
0<ap, <<y, <l 0<so<-<Spp1<n x€l0,1] 7= ’

4. COROLLARIES

COROLLARY 4.1. Let &, be the set of linear operators L, : C[—1,1] —
B[—1,1] with finite rank n+ 1. Let ?,.1 be the space of polynomial
p= Z:’IOI a; X' of degree <n+ 1, such that |a,.1|<1. Then

1
. f _ L = —,
,inf, p:;ﬁl 1P — Lapllgi—1,11 o
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Proof. 1t follows from Lemma 2.5, Theorem 3.3 and [6] that

inf  sup ||p—L.p
ot sup o= Lo 1

= inf sup ||p—Lyp
Lu€Sun pedny, ] . HB (=1.1]

= inf sup H |otin — X|
IS < <wan <1 xe[-1,1] 10

n

2i+1

= sup
XG[—l,l] i=0

COS m—X

Remark. Note that Lagrange interpolatory polynomial for the nodes

_ 2k+1
Xj = COS 55, 3 T, k=0,.

Lif(x) = f ()

k=0
where T, (x) = cos(n + 1) arccos x, has the following properties:
(a) if p € 2, then L¥p(x) = p(x) on [0, 1];

(b) if p(x) =x"t', then p(x)— Lip(x) = 5T,11(x) on [0,1]. Conse-
quently,

sup ||p — Lypl| =
PEPn+1

COROLLARY 4.2. Let ¥, be the set of linear positive operators L, :
C[0,1] — BI0, 1] with finite rank n+ 1. Let P, be the space of polynomial
p= Zf:() a; X' of degree <2, such that |ay|<1. Then

inf sup ||p— anll—

L,,Efno PGJ)Z

The proposition follows from Lemma 2.6, Theorem 3.3 and extends the
results of Korovkin [3] and Videnskii [8].
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